Exercise 1
Using the derivative function, find the coordinates of any stationary point(s) along the length of the curve defined by:

\[y = x^2 - 2x - 8 \]

Exercise 2
Using the derivative function, find the coordinates of any stationary point(s) along the length of the curve defined by:

\[y = -x^2 - 6x - 8 \]
Exercise 3
Using the derivative function, find the coordinates of any stationary point(s) along the length of the curve defined by:

\[y = 2x^3 - 12x^2 - 30x - 10 \]
Exercise 4
Using the derivative function, find the coordinates of any stationary point(s) along the length of the curve defined by:

\[y = -2x^3 + 3x^2 + 36x - 6 \]
Exercise 5

Using the derivative function, find the coordinates of any stationary point(s) along the length of the curve defined by:

\[y = x^3 + 3x^2 + 3x - 2 \]