RadfordMathematics.com

Operations with Vectors

(Linear Combinations of Vectors) 2D Vectors

Solutions can be found at the bottom of Exercise 1 (online notes). To get there, either click here:

RadfordMathematics.com

or, if you've printed this worksheet out, by scanning the QR Code in the upper right hand corner of the page.

Exercise

Answer each of the following questions expressing your answer in component form:

1. Find
$$\overrightarrow{a} + \overrightarrow{b}$$
 where $\overrightarrow{a} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ and $\overrightarrow{b} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$.

2. Find
$$\overrightarrow{c} - \overrightarrow{d}$$
 where $\overrightarrow{c} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ and $\overrightarrow{d} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$.

3. Find
$$3\overrightarrow{u}$$
 where $\overrightarrow{u} = \begin{pmatrix} -2\\ 7 \end{pmatrix}$.

RadfordMathematics.com

4. Find $2\overrightarrow{a} + \overrightarrow{b}$ where $\overrightarrow{a} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ and $\overrightarrow{b} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$.

5. Find $\overrightarrow{u} - 2\overrightarrow{v}$ where $\overrightarrow{u} = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$ and $\overrightarrow{v} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$.

6. Find $4\overrightarrow{b} + 2\overrightarrow{c}$ where $\overrightarrow{b} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ and $\overrightarrow{c} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$.

7. Find $-2\overrightarrow{a} + \overrightarrow{b}$ where $\overrightarrow{a} = \begin{pmatrix} 3 \\ 7 \end{pmatrix}$ and $\overrightarrow{b} = \begin{pmatrix} 6 \\ -2 \end{pmatrix}$.

RadfordMathematics.com

8. Find $\overrightarrow{a} - 2\overrightarrow{b}$ where $\overrightarrow{a} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ and $\overrightarrow{b} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$.

9. Find $4\overrightarrow{u} - 3\overrightarrow{v}$ where $\overrightarrow{u} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$ and $\overrightarrow{v} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

10. Find $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ where $\overrightarrow{a} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$, $\overrightarrow{b} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$ and $\overrightarrow{c} = \begin{pmatrix} 6 \\ -7 \end{pmatrix}$.

11. Find $2\overrightarrow{u} + \overrightarrow{v} - 3\overrightarrow{w}$ where $\overrightarrow{u} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$, $\overrightarrow{v} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ and $\overrightarrow{w} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$.

12. Find $\overrightarrow{a} + 2\overrightarrow{b} - 3\overrightarrow{c}$ where $\overrightarrow{a} = \begin{pmatrix} 25 \\ 22 \end{pmatrix}$, $\overrightarrow{b} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ and $\overrightarrow{c} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$.