RadfordMathematics.com

Scalar Product

(Dot Product)

2D \& 3D Vectors

Answers can be found at the end of Exercise 1 (online notes). To get there, either click here: RadfordMathematics.com or, if you've printed this worksheet out, by scanning the QR Code in the upper right hand corner of the page.

Exercise 1

Calculate the scalar product (or dot product) of each of the following pairs of vectors:

1. $\vec{a}=\binom{-2}{1}$ and $\vec{b}=\binom{3}{7}$
2. $\vec{u}=3 \vec{i}-2 \vec{j}+\vec{k}$ and $\vec{v}=-\vec{i}+4 \vec{j}+2 \vec{k}$
3. $\vec{c}=\left(\begin{array}{c}2 \\ 0 \\ -5\end{array}\right)$ and $\vec{d}=\left(\begin{array}{c}1 \\ -3 \\ 4\end{array}\right)$

Exercise 2

Given the vectors $\vec{a}=\left(\begin{array}{c}2 \\ -3 \\ 4\end{array}\right)$ and $\vec{b}=\left(\begin{array}{c}1 \\ -2 \\ p\end{array}\right)$, find the value of p for which \vec{a} and \vec{b} are perpendicular.

Exercise 3

Given the vectors $\vec{u}=\left(\begin{array}{l}0 \\ 5 \\ q\end{array}\right)$ and $\vec{v}=\left(\begin{array}{c}0 \\ 10 \\ 14\end{array}\right)$, find the values of q for which \vec{u} and \vec{v} are:

1. parallel
2. perpendicular

Exercise 4

Show that triangle $A B C$, where the vertices A, B and C have coordinates $A(0,-3,9)$, $B(5,-10,10)$ and $C(2,-4,6)$ is right angled at C.

Exercise 5

Given $\vec{u}=\left(\begin{array}{c}2 k \\ -1 \\ 1\end{array}\right)$ and $\vec{v}=\left(\begin{array}{c}k \\ k \\ -1\end{array}\right)$ are perpendicular and $k>0$, find the value of k.

