

(Dot Product) 2D & 3D Vectors

Answers can be found at the end of Exercise 1 (online notes). To get there, either click here: <u>RadfordMathematics.com</u> or, if you've printed this worksheet out, by scanning the **QR Code** in the upper right hand corner of the page.

Exercise 1

Calculate the scalar product (or dot product) of each of the following pairs of vectors:

1.
$$\overrightarrow{a} = \begin{pmatrix} -2\\1 \end{pmatrix}$$
 and $\overrightarrow{b} = \begin{pmatrix} 3\\7 \end{pmatrix}$
2. $\overrightarrow{u} = 3\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$ and $\overrightarrow{v} = -\overrightarrow{i} + 4\overrightarrow{j} + 2\overrightarrow{k}$
3. $\overrightarrow{c} = \begin{pmatrix} 2\\0\\-5 \end{pmatrix}$ and $\overrightarrow{d} = \begin{pmatrix} 1\\-3\\4 \end{pmatrix}$

Exercise 2

Given the vectors $\overrightarrow{a} = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}$ and $\overrightarrow{b} = \begin{pmatrix} 1 \\ -2 \\ p \end{pmatrix}$, find the value of p for which \overrightarrow{a} and \overrightarrow{b} are perpendicular.

Exercise 3

Given the vectors $\vec{u} = \begin{pmatrix} 0 \\ 5 \\ q \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} 0 \\ 10 \\ 14 \end{pmatrix}$, find the values of q for which \vec{u} and \vec{v} are:

parallel
 perpendicular

Exercise 4

Show that triangle ABC, where the vertices A, B and C have coordinates A(0, -3, 9), B(5, -10, 10) and C(2, -4, 6) is right angled at C.

Exercise 5
Given
$$\vec{u} = \begin{pmatrix} 2k \\ -1 \\ 1 \end{pmatrix}$$
 and $\vec{v} = \begin{pmatrix} k \\ k \\ -1 \end{pmatrix}$ are perpendicular and $k > 0$, find the value of k .